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ABSTRACT 

It is p r o v e d  t ha t  if Y C X a re  m e t r i c  spaces  wi th  Y h a v i n g  n > 2 p o i n t s  t h e n  a n y  

map f from Y into a Banach space Z can be extended to a map f from X into Z 
so that Ilfll,~,,--- c Iogn Ilflh. where c is an absolute constant. A related result is 
obtained for the ease where X is assumed to be a finite-dimensional normed 
space and Y is an arbitrary subset of X. 

Cons ider  the following extension problem:  given three metric spaces X, Y, Z 

with Y _C X, what  is the smallest constant  L such that  any Lipschitz funct ion 

f :  Y---~ Z admits  an extension f ' X  ~ Z with Ilfll,io--< L Ilfll,i~? 

A classical result of Kirszbraum (see [6]) states that  if X and Z are Hilbert  

spaces then L = 1. A n o t h e r  classical result is the fact that  if Z = l~" and X, Y 

arbi trary then L = 1 (see [6] again). Recent ly ,  this p rob lem gained some new 

interest. Marcus  and Pisier ([4]) p roved  that  for X = Lp, 1 < p < 2, Z a Hilbert  

space and Y finite (say I Y I = k), L - - - C ( p ) ( l o g  k)  1/p-in. Johnson  and Linden-  

strauss ([2]) p roved  that  for  X a general  metric space, Y and Z as above,  

L < C(log k)  la. These  two results are close to being the best  possible; one  has 

L => 6(log k / log  log k )  1/"-in in the first setting and L => 6(log k / log  log k)  ~/2 in the 

second (cf. [2]). 

In this note  we concern  ourselves with a more  general  situation: Z is a general  

Banach  space and we put  no geometr ica l  restrictions on X. We  prove  the 

following two theorems:  
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THEOREM 1. Let T C X be two metric spaces with 2 <- I T I = k < ~c. Let Z be a 

Banach space and f : T---~ Z a function. Then there exists a function f "  X--~ Z 

with ~T = f and 

Ilfll,,p =< K .  (log k) .  Ilfll,,p 

where K is an absolute constant. 

THEOREM 2. Let X, Z be Banach spaces with dim X = n < o:, let F C_ X be 

any set and let [ : F ~ Z be a Lipschitz function. Then there exists a function 

[ : X ~ Z with ~ = f and 

II[tl,,p--< K" n" Ilfll,,p 

where K is an absolute constant. 

The two theorems have similar proofs. We begin with a proof of Theorem 2. 

The idea of the proof is based on the proof of an extension theorem of Whitney 

(see [5], [7]). We begin with a simple covering lemma. 

LEMMA 3. Let X be an n-dimensional normed space with open unit ball Bx. 

Then there are {xi},=~ in X such that 

U ( x , + B x )  = X  
i = l  

(a) 

and 

(b) 

PROOF. 

forallx@X, I{i;x~x,+~B,,}l<=4 ". 

Let {x,}~=, be a maximal 1-net in X, i.e. IIx,- xjll~ 1 for i # j  and for 

all x E X there exists an i such that IIx- x, II < 1. It is then clear that (a) is 

satisfied. 
Let x E X .  If x E x ~ + 3 B x  then x ~ E x + 3 B x ;  it follows that x~+½BxC_ 

x + 2Bx. All the balls x~ + ½B× are disjoint so 

I{i; x ~ x, + ~B,,}I • Vol(½nx) ~ Vol(2Bx) 

o r  

I{i; x E x, +~Bx}l" 2-"" Vol(B×)=< 2" VoI(B×) 

and we get the desired result. [] 

PROPOSITION 4. Let X be an n-dimensional Banach space and let F C_ X be a 

closed set. Then there exist homothetic copies {K~}7=~ of Bx, say Ki = y, + a~Bx, 

such that 
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(a) 

(b) 

and 

(c) 

PROOF. 

X\F= U K,, 
i = l  

4 . ct~ <= d(K~, F)  <=18 . a~ 

3 [or all x E X \ F, I { i ; x ~ y, + ~a,Bx } l <= 3"4 ~. 

For m =0 ,  ±1 ,  ± 2 , . . .  let A,.  = { x ; C . 2 - ~ " + ' ) < d ( x , F ) < =  C . 2 - " }  

(C will be chosen momentarily). By Lemma 3 there are x ? E  X such that for 

each m, { x 7 + 2 - " "  Bx},=z covers X and for all x G X, 

I{i; x E x?  + 3~. 2 - 'Bx} /  < 

Put 

K T = x T + 2 " . B × ,  R T = x T + ~ . 2 - " B x ,  

If i E I,, and x ~/(~" then 

and I,, = { i ; K T ' A A , , ~ O } .  

( , )  

For C_-> 15 we have 

(C/2 - 3). 2-" =< C .  2 -~"÷')- diam/~~' < d(x,  F)  

< C . 2 - "  +diamK~ = ( C + 3 ) . 2 - " .  

(C + 3)2 -~" +2~ ~ (C/2 - 3)2-" 

so that /~7' n / ( ? ÷ 2  = O for all i @/.1, j E I"+2, rn = 0, ___ 1, ± 2,. • .. 

Let {K~ff=, be an enumeration of {K?},~t. . . . .  ~, then {Ki}7=, is the desired 

covering. Indeed, since for all m 

A,.C_ U K ? C _ A "  ~ U A m U A , . . ~ ,  
i ~ l  m 

we get that UT=z K~ = X \ F  and that for all x ~ X \ F  

I{i;x~/(~}1_-<3-4 ". 

Finally, if K~ = K;" with i E / , .  then a, = rad K~ = 2-" and, by (*) with C -- 15, 

4.o~, = 4 . 2 - "  <-d(K~,F)<-_18.2 -" = 18. o~,. []  

Using the covering {K~}7-, we now build a partition of unity for X \ F .  Fix an 

m > 1 to be chosen later and for each i define 

, ,-IIx - y, ll)" I I x -  y, 
= 

otherwise 
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and, for x E X \ F, define 

qS~ ( x ) =  cp~(x)/ i~ ~pj(x) 

(notice that q~ (x) is non-zero for at most 3.4" i's). Then 

¢, ( x )  = xx,,:. 
i=1 

LEMMA 5. For each x E X \ F 

I ¢ , ( x ) -  ,~,(y)l 
lim sup ~=1 

~ iix -yJJ 
_-< 80m(3 • 4" ) ' "d  (x, F)- ' .  

PROOF. First notice that for each i 

](¢,(x)-]Ix ~o,(y)] < (m(~ai-]]x-y,]]) , . -1 (**) lim sup 
ifltx y,[[<3 

otherwise. 

Now, 

~=,'~' ] q~' (x) - if' (Y) [ = ,=~'~' l~°~(x)Yq~J(Y)-~'(Y)E%(x)lE ~j (x)E q~j (y) " 

Add and subtract q~, (y)E q~j(y) to the numerator of the i-th term to get 

I ¢ , (x ) -¢ , (y ) l  ~ E I~ , (x) -  ~,(y)l + E ~ , ( y ) ~  I ~ , ( x ) -  ~,(y)l 
~=1 = i=t Z~p/(x) ~=1 j=, Eq~/(x)Y-,q~j(y) 

= 2 ~ ]q~,(x)-~C,(y)] / j ~  .= 

By (**), we get 

+£ I,~,(x)-,~,(y)l 
lim sup ~=1 

y~x iix - y l i  
2m Y,(~a,-IIx - Y, IIF -1 

3 = E ( = a ,  - II x - y ,  II )m 

where the sums in the last expression are taken over all i 's such that 

lix y, ii 3 - < ~a~. Using H61der's inequality and the fact that for i such that x E K,, 

-~,~, - in x y, ii >1 1 - =~a~ >=~d(x,F) (note d(x,F)<=2a, + d(K,,F)<=2Oa~), we get for 

x~X\F,  
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~l¢,(x)-¢,(y)l 
lim sup ~=~ 

~ I I x - y l l  

< 2- m - ( y ~ ( 3  _ ]l x _ Y' 11),,)(,.-~),,. - ( 3 . 4 " )  1/m 

~(~,~, - II x - y, II)~ 

< 2.  m . ( 3 . 4 " ) ' "  

(***) = (:~(-~, - I I x  - y, I I ) ' )  ''~ 

_-< 80. m .  ( 3 . 4 " )  ',m • d(x, F)-'. []  

We are now ready  for  the 

PROOF OF THEOREM 2. The re  is no loss of genera l i ty  to assume that  F is 

closed. With  the nota t ion  as in Propos i t ion  4 and L e m m a  5, let p~ E F be such 

that  d(p,, K,) = d(F, K~). Let  f :  F--~ Z be a Lipschitz map  and define f :  X--~ Z 

by 

f (x)  = ~ f(p,)~, (x)  for  x ~ F 
i = 1  

(note: the sum is f ini te)  and 

f (x)  = f(x)  for x E F. 

It is easily checked  that  f is cont inuous.  If x E X \ F then  x @ K~ for  some  i0 and 

s i n c e 2 f f i ( z ) = l  for all z E X \ F w e g e t  

lim sup I I f ( x ) - f ( y ) l l  lim sup I I~ f (p , ) ( ,~ , (x ) -  ~,(y))ll  
y ~ ,  Itx - y I1 = y - ,  Ifx - y tt 

II E(/(p,)-  f(p~))(V3, ( x )  - q3, (Y))[I  (****) = lim sup 
~-x  II x - y II 

=< l i m  s u p  ( s u p  Ill(p,)- f ( p z ) l l ) "  I; ] ,~, ( x )  - ,~, ( y ) l  
y ~ ,  II x - y II 

where  bo th  the sup and the sum extend over  all i ' s  such that  II x - y ,  II--< ~,~, or 

I l y -  y, I1---~,. For  i 's  of the first kind 

11 yi - y~][ <3  = ~(o~, + a~) _-< -~(d (K,, F) + d(K,, F)) < 3  = ~d(x, F) 

(note: d(Ki, F)<-d(x,F)+ 2o~, <=d(x,F)+½d(K~,F) so d(Ki, F)<=2d(x,F)). 
Also 

II Y, - P, II <- d(K~, F) <-_ 2d(x, F) 

and similarly 

II y ~ -  p~ll ~ 2d(x, F). 
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Thus we get 

and 
liP, - Pall ~ ~d(x, F) 

I l l (p , ) -  f(p0]l ~ ~d(x, F)llfll.,p. 

If i satisfies IlY Y, II <3 - = ~ai then assuming without loss of generality y E K~ and 

d(y, F) <= 2d(x, F) we get similarly 

I l l (p , ) -  f(pOII--< 11. d(x, F).  Ill [[.p. 

Returning to (****) and using also (***) we get 

lim s u p / ( x )  - / ( y  ) < 11. d (x, F ) .  I}fll , ,p • 80- m .  (3.4"),/m. d (x, F)- '  
y~  I Ix -y l l  = 

=< 880. m .  (3 .4")  '/m Itfil,,p. 

Choosing m = n gives the desired result. [] 

PROOF OF THEOREM 1. Since every metric space embeds isometrically into an 

L~ space, we may assume without loss of generality that X is a Banach space. 

Order T in some linear order and for t E T let 

A, = {x E X \  T; d ( x , t )<  d(x ,s )  for all s e T, s #  t and 

t is the first to satisfy this} 

and let 

B, = U B (x, ½d (x, T)) 
xEA~ 

(where B(x,r)={yEX;lly-xll<r}). Then the A,'s are mutually disjoint, 

I,.J,~rA, = X \  T and U,~rB ,  = X \  T. 

Note that 

(*) if x EB,  tqB~ then IIt-sll<=6.d(x,T). 

Indeed, let y E A,, z E A,  be such that 

I l y - x l l < ~ d ( y , t ) ,  I I z - x l l < ½ d ( z , s ) .  

Then 

and 

II Y - tit = d(y, T) ~ !1Y - x It + d (x, T) ~ ½d (y, T) + d(x, T) 

Ily - t l l  = d(y, T)< 2d(x, T). 
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Similarly 

and we conclude 

EXTENSIONS OF LIPSCHITZ MAPS 

IIz - sll = d(z ,  T)<=2d(x, T)  

l i t -  s II < lit - y [I + Ily - x I1+ IIx - z I1+ IIz - , l l  

=< d(y, T) + ½d(y, T)+½d(z ,  T ) +  d(z ,  T )  

=<6. d(x, T). 

Define now for t E T and  m > 1 (to be chosen later) 

q~,(x)=d(x ,B~,)  ", x E X  

and for x E X \ T  

Then 

~,(x) = ~, ( x ) / , ~  T ~, (x). 

As in the proof of Theorem 2 we want first to estimate 

Xl~ , (x ) -  ~,(y)l lim sup 
,~, Ilx - y II 

A similar computation to that in Theorem 2 gives 

limsuplq~'l~)x-y'l¢Y)l<m'd(x'BT)"-'r-, = 

and, for x E X \ T, 

135 

,~14,(x)- '~, (y)l 21 q~, ( x ) -  q~, (y)l 
lim sup y ~ x  IIx- yll ~ 2 1 i m s u P l l x - y l l ' 2 ~ , , ( x )  y~, 

X d ( x, B ~),. - , k 1/'' ( ,~ )-1/,, 
< = 2 . m .  Y d ( x , B ~ ) , .  < = 2 . m .  • d(x,B~,) " 

(Note: The computation here is actually simpler than the one in the proof of 

Theorem 2 - -  one does not have to worry about the number of elements in the 
summations). 
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Now, x ~ A, for some t and, by the definition of B,, d(x, B~,) >= ½d(x, T) so that 

we get 

E I if, ( x ) -  if, (Y)l <=4. m.  k 1,~. d(x, T)-'. lim sup 
,~, IIx - y II 

(**) 

Define now f by 

and 

f(x ) = , ~  f(t)(o, (x ) for x U X \ T 

f(x)  = f(x)  for x ~ T. 

Then f is continuous and, for x ~ X \ T ,  

lim sup 
y ~ x  

where s is such that x E As. The sum above extends over all t such that either 

x E B ,  or y ~ B , .  If x E B ,  then since also x E B ~  we have by (*) that 

lit - s 11 < 6. d(x, T) and that [ I f ( t ) -  f(s)l  [ _-< 6- d(x, T). [Ifll,p- If y E B, and y is 

close enough to x then l i t -  s I1" 6. a(y, T ) ~  7. a(x, T) and Ill(t)-/(s)ll--< 
7. d(x, T). Ilfll,p. From this and (**) we get 

lim sup II f (x )  - f(r)ll < 7. d ix, T). II f ll,p" lim sup E [ if, (x) - ~, (y)[ 
y - x  IIx - y II - -  , ~ x  IIx - y II 

z 7. d(x, T). Ilfll ,p" 4. m .  k"md(x, T ) - '  

_-<28. m-  k ''m • [[fl[,i~. 

Choosing m = log k, we get the desired result. [] 

We do not know if the results of Theorems 1 and 2 are the best possible, up to 

absolute constants. Using the fact that the constants in the linear analogues are 

known, one can show that up to absolute constants, the best constants are no 

better than (log k/log log k)l/2 in Theorem 1 (this is done in [2]) and then n 1/2 in 

Theorem 2. (There are couples of Banach spaces Y _C X with dim Y = n and 

such that the best linear projection from X onto Y has norm => n 1/2. Now use [3] 

to show that also the best Lipschitz projection has constant => n1~2.)There is a 

lack of "non-linear" examples in this area. For example, we do not know if in 
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Theorems 1 or 2 with the additional assumption that X is a Hilbert space one can 
replace the constants log k (resp. n) with an absolute constant. We conclude this 

note with two remarks concerning examples. The first is a non-linear construc- 
tion, originally presented in [3], which shows that one cannot get a constant 

better than (log k) TM in Theorem 1. (As we remarked above one can actually do 

better - -  using a "linear" example.) The proof here is somewhat different from 

the one in [3]. 

Consider the metric space T consisting of all subsets of {1 . . . . .  n} with the 

metric d ( A , B ) = h ( A , B )  ~n, where h is the Hamming metric h(A,B)= 
[A A B I. Enlarge T by adding abstract elements {fi, }AC~I ...... ~ satisfying, for some 

r > 0 (to be chosen later), 

h(A,B)  (*) d(A,.,4)<=r, d(fi,,B)<-_ 
Y 

Since these two sets of requirements do not contradict the triangle inequality in 

T (check), we can extend d to get a metric space 

X =({A,A}A_~, ...... ~,d) 

satisfying also (*) (see Corollary 1, p. 271 in [3]). Let f:T---~ l; be the map 

f ( A ) =  ~ e,, A C{1 . . . . .  n} 
i ~ A  

((e,) being an orthonormal basis in 12). Then [[fll,,p=llF'll,,p= 1. If f is any 

extension of f to X denote h = [l?lll,p and Za = f(fi,), A C {1 . . . . .  n}. If (A, B ) i s  
an edge (i.e., h(A ,B)= 1) then IIZA - z ,  If (A ,B) i s  a diagonal (i.e., 

h(A, B)= n) then IIZA- ZB I[ = " ~ -  2xr. Since in a Hilbert space 

(A, Ave 
B)-diagonal 

; rr A- .lr 
=< ~nn \(A, B)-edge 

l/2 

(see [1]), we get 

or  

- 2hr <= ~nn)t/r 

! 1/4 F o r r = n ~ 4 w e g e t ~ = ~ n  . [] 
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The second remark is that if, in the context of Theorem 1, one takes T to be a 
discrete set, 1 - d(t, s) >- e > 0 for all t ¢  s, t, s E T. Then one can find an.f  with 
Ilfll,,p--< (2/~)lr/ll,,p. This is discussed in [2]. We bring here a very simple proof. Fix 

a to~ T and define f by 

f(x) = f(to) if x ~ U B(t, e/2) 
t E T  

and 

1 f(x) = ? if x E B ( t ,  2 ) .  

It is easily checked that II f II,p ~ (2/e)ll f IL. [] 
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