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ABSTRACT

It is proved that if Y C X are metric spaces with Y having n = 2 points then any
map f from Y into a Banach space Z can be extended to a map f from X into Z
so that ||f||,, = ¢ log n||f|l,, where c is an absolute constant. A related result is
obtained for the case where X is assumed to be a finite-dimensional normed
space and Y is an arbitrary subset of X.

Consider the following extension problem: given three metric spaces X, Y, Z
with Y C X, what is the smallest constant L such that any Lipschitz function
f:Y— Z admits an extension f: X — Z with ||f|li, = L||f]}:»?

A classical result of Kirszbraum (see [6]) states that if X and Z are Hilbert
spaces then L = 1. Another classical result is the fact that if Z=12and X, Y
arbitrary then L =1 (see [6] again). Recently, this problem gained some new
interest. Marcus and Pisier ([4]) proved that for X = L,, 1 < p <2, Z a Hilbert
space and Y finite (say | Y|=k), L = C(p)(log k). Johnson and Linden-
strauss ([2]) proved that for X a general metric space, Y and Z as above,
L = C(log k)"*. These two results are close to being the best possible; one has
L = 8(log k/log log k)"~ in the first setting and L = §(log k/log log k)" in the
second (cf. [2]).

In this note we concern ourselves with a more general situation: Z is a general
Banach space and we put no geometrical restrictions on X. We prove the
following two theorems:
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THEOREM 1. Let T C X be two metric spaces with 2=|T|=k <%. Let Zbe a
Banach space and f: T— Z a function. Then there exists a function f: X — Z
with fir = f and

1£llio = K - (log k) - || llus
where K is an absolute constant.

THEOREM 2. Let X, Z be Banach spaces with dim X = n <o, let FC X be

any set and let f : F— Z be a Lipschitz function. Then there exists a function
f:X— Z with fir = f and

Iflhip = K - 1 - [|f iy
where K is an absolute constant.

The two theorems have similar proofs. We begin with a proof of Theorem 2.
The idea of the proof is based on the proof of an extension theorem of Whitney
(see [5], [7])- We begin with a simple covering lemma.

LeMMA 3. Let X be an n-dimensional normed space with open unit ball By.
Then there are {x;};_, in X such that

(a) U (x+Bx)=X
i=1
and
(b) forallx € X, |{i;x €Ex +3Bx}|=4"

ProoF. Let {x;};-, be a maximal 1-net in X, i.e. | x; — x;||= 1 for i # j and for
all x € X there exists an i such that ||x — x;[|< 1. It is then clear that (a) is
satisfied.

Let x€X. If x Ex; +3Bx then x; Ex+3Bx; it follows that x;+:Bx C
x + 2By. All the balls x; +3By are disjoint so

[{i;x € x; +3Bx}|- Vol(Bx) = Vol(2Bx)
or
[{i;x € x; +1Bx}|- 2™ - Vol(Bx) = 2" Vol(Bx)
and we get the desired result. a

PROPOSITION 4. Let X be an n-dimensional Banach space and let F C X be a
closed set. Then there exist homothetic copies {K.}i-1 of Bx, say Ki = y; + aiBx,
such that
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(a) X\F= U K,
(b) 4-0,=d(K,F)=18- a;
and
(c) forallx € X\F, |{i;x €y +iaBx}|=34"

Proor. For m=0,x1, %2 - - let A, ={x;C-27""V<d(x,F)=C-2"}
(C will be chosen momentarily). By Lemma 3 there are x{" € X such that for
each m, {x"+2™™ - Bx}i=: covers X and for all x € X,

[{i;x Ex7+3-27"Bx}| = 4"

Put

Kr=x"+2" By, Kr=x"+}2"By, and IL,={;K'0NA,#C}
If i€, and x € K" then

(CR-3)-27"=C-2"""~diam K["< d(x, F)
) =C-2" +diam K= (C+3)-27"
For C = 15 we have
(C+32"2=(C2-3)27"

sothat KFrNKr =@ forall i €L, j € Lusa, m =0, %1, 22+,
Let {K;};=, be an enumeration of {K[}ie; n--=, then {K;}i_, is the desired
covering. Indeed, since for all m

Am g U K:”(_:AmflUAm UAm-H’

iel,

we get that U, K; = X\F and that for all x € X\F
Hi;x e K} =34
Finally, if K; = K{" with i € I, then a; =rad K; =27" and, by () with C = 15,
4-0,=4-27"=d(K,,F)=18-27" =18 a.. d

Using the covering {K:}i-, we now build a partition of unity for X\ F. Fix an
m > 1 to be chosen later and for each i define

Ga:—llx =) Ix—-yl=3a
@i(x) =

0 otherwise
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and, for x € X\ F, define
@i(x)= <P.-(x)/2 @i (x)
f=

(notice that ¢;(x) is non-zero for at most 3-4" i’s). Then
3 6.) = xur:
LemMMmA 5. For each x € X\F

2 |6 (x) = & (y)l
lim sup ” ]

y—x

<=80m(3-4")""d(x, F)".

Proor. First notice that for each i

n mGa =[x =yl ifflx =y <3a,

y—x lx—yl 0 otherwise.

Now,

Add and subtract ¢;(y)Z ¢;(y) to the numerator of the i-th term to get

Elw.(x) <p.(y)é21—i~L~ﬂ21 2 iLAMX)J

S ¢ (x) A2 (x)2 ¢(y)
=25 le0-al/ 3 60,
By (++), we get
> 16,60 &()| om3
Gaw =[x = .|
lm o ey T = SGa ~x ~ . )"

where the sums in the last expression are taken over all i’s such that
llx = y: || < 3a:. Using Holder’s inequality and the fact that for i such that x € K;,
ja;, — || x — yi|| = 3a; Zwd(x, F) (note d(x, F)=2a; + d(Ki, F) =20a;), we get for
x EX\F,
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lim sup = 6= 0) <2-m- (GG —3“x — Y ',)m)(W:/'" -(3-4)""
2Ge —[x =y )

y-ox lx =yl
- 2'm~£3'4")”'"
T CCa —[lx =y )y

<80-m-(3-4")"" - d(x, F)™". 0

(***)

We are now ready for the

PrOOF OF THEOREM 2. There is no loss of generality to assume that F is
closed. With the notation as in Proposition 4 and Lemma 5, let p; € F be such
that d(p;, Ki) = d(F, K;). Let f : F— Z be a Lipschitz map and define f: X — Z
by

f(x)=§;f(pf)¢.-(x) for x@F

(note: the sum is finite) and

f(x)=f(x) for x EF.

It is easily checked that f is continuous. If x € X\ F then x € K, for some i, and
since 2 @i (z)=1 for all z € X\F we get

tim sup L =FOM _ o IS F@)(@ )~ @y )]
yox x =yl y—x fx =yl

(58  Jim sup 2@ = F(p) (@ ()~ 6. )

y—x ”x -y

= lin;j,uP Gsupllf(e)—fe)l) - Zﬁﬁ%m

where both the sup and the sum extend over all i’s such that |x — y|| <%« or
ly = yi | =3a;. For i’s of the first kind

Iy =yl = 3o + @) =3(d(Ki, F) + d(K,, F)) =3d(x, F)

(note: d(Ki,F)éd(x,F)+2a,»éd(x,F)+%d(K,«,F) so d(K;, F)=2d(x, F)).
Also

and similarly

|| Yio"Pio"§ 2d(x, F).
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Thus we get

Ip: — poll = 2d(x, F)
and

£~ fp) = 5d(x, F)||f lli»-

If i satisfies |y — y: || =3a; then assuming without loss of generality y € K, and
d(y, F)=2d(x, F) we get similarly

1) = fpIlI =11 - d(x, F)-[|f o

Returning to (x***) and using also (***) we get

lim sup ”xx — vl =11-d(x, F) | flp-80-m-3-4")" -d(x, F)™
y—x
=880 m-(3-4")"" | fll»-
Choosing m = n gives the desired result. O

Proor oF THEOREM 1. Since every metric space embeds isometrically into an
L. space, we may assume without loss of generality that X is a Banach space.
Order T in some linear order and for t € T let

A={xeX\T;d(x,t)=d(x,s)forall s ET, s# t and
t is the first to satisfy this}

and let
B, = |J B(x,3d(x,T))

XEA,

(where B(x,r)={y € X;|ly —x||<r}). Then the A,’s are mutually disjoint,
UierA, = X\T and U,e7B, = X\T.
Note that

(*) if x€B,NB, then|t—s||=6-d(x,T).
Indeed, let y € A,, z € A, be such that
ly —xl<id(y.0), |z-x|<:id(zs).

Then
ly —tll=d(y, )=y —x{+ d(x, T)=2d(y, T) + d(x, T)

and

ly —tl=d(y, T)=2d(x, T).
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Similarly
lz—sll=d(z, T)=2d(x, T)
and we conclude
le=sl<lt=yl+ly—xl+lx = z|+]z = s]|
=d(y, T)+1d(y, T)+3d(z, T)+ d(z, T)
=6-d(x, T).

Define now for t € T and m >1 (to be chosen later)
¢ (x)=d(x, B))", xEX
and for x € X\T

(l;r(x): ‘Pl(x)/S;QDS(x)-

Then

,; @ = Xxir-

As in the proof of Theorem 2 we want first to estimate

2] @ (x) = éi(y)|
b=yl

lim sup

y—x

A similar computation to that in Theorem 2 gives
lim su Mém -d(x, B)"™!
e PR (B9
and, for x € X\ T,

2 16.(x)= 6.0

. P : Sle(x)= e (y)]
<

e P el PR By

o SdEBY) l/m,( cm)‘”"‘
=2-m Sd(x, B =2-m-k r;rd(x,B.)

(Note: The computation here is actually simpler than the one in the proof of

Theorem 2 — one does not have to worry about the number of elements in the
summations).
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Now, x € A, for some ¢t and, by the definition of B,, d(x, B{) = 3d(x, T) so that
we get

(**) llrfyl_iup ZJ @til(;)_—y(ﬁt ()’)l §4 -m - kl/m . d(x, T)-l-

Define now f by

f(xy= ;rf(t)ét(x) for x € X\T

and

f(x)=f(x) forxeT.

Then f is continuous and, for x € X\ T,

im sup LSO —sim sup | 5 636,61~ .02 /1x =1
~timsup | 5, ) - 1)@ )= 60N /1 - 1

where s is such that x € A,. The sum above extends over all ¢ such that either
xE€B, or yEB,. If x €EB, then since also x € B, we have by (*) that
lt—sl|=6-d(x, T) and that || f(t)— f(s)|=6-d(x, T) |fllx- If y EB, and y is
close enough to x then |[t—s||-6-d(y, T)S7-d(x,T) and ||f(t)—f(s)|=
7-d(x, T):[|fllip. From this and (**) we get

, 1fe) = Foll - . el 1 516 (x) = ¢.(y)]
lim sup "SR =7 d 0 T) - [f e - lim sup =257k

<7-d6T)|flio-4-m - k"™d(x, T)™
=28-m- k" -||flhe.

Choosing m = log k, we get the desired result. a

We do not know if the results of Theorems 1 and 2 are the best possible, up to
absolute constants. Using the fact that the constants in the linear analogues are
known, one can show that up to absolute constants, the best constants are no
better than (log k/loglog k)"* in Theorem 1 (this is done in [2]) and then n'* in
Theorem 2. (There are couples of Banach spaces Y C X with dimY = n and
such that the best linear projection from X onto Y has norm = n'”. Now use [3]
to show that also the best Lipschitz projection has constant = n'?) There is a
lack of “non-linear” examples in this area. For example, we do not know if in
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Theorems 1 or 2 with the additional assumption that X is a Hilbert space one can
replace the constants log k (resp. r) with an absolute constant. We conclude this
note with two remarks concerning examples. The first is a non-linear construc-
tion, originally presented in [3], which shows that one cannot get a constant
better than (log k)" in Theorem 1. (As we remarked above one can actually do
better — using a “linear”” example.) The proof here is somewhat different from
the one in [3].

Consider the metric space T consisting of all subsets of {1,...,n} with the
metric d(A, B)=h(A, B)"”, where h is the Hamming metric h(A,B)=

r >0 (to be chosen later),
(*) d(A,A)sr, d(A B)=
Since these two sets of requirements do not contradict the triangle inequality in
T (check), we can extend d to get a metric space

X= ({AvA}AQ(l ..... n>d)

satisfying also (x) (see Corollary 1, p. 271 in [3]). Let f: T— [; be the map

f(A)=3 e, AC{,... n}

((&;) being an orthonormal basis in I15). Then ||fl, =lf ', =1. If f is any
extension of f to X denote A =||fl;, and Z, = f(A), A C{1,...,n}. If (A, B)is
an edge (i.e., h(A,B)=1) then | Z. — Zz||= A/r. If (A, B) is a diagonal (i.e.,
h(A, B)=n) then || Zs — Zs|Z Vn—2Ar. Since in a Hilbert space

Ave | Za —Zs |\ Ave 1 Za — Zs [\
(A, B)-diagonal (A, B)-edge
(see [1]), we get

Va-2Ar=Var/r

or

A<\/77'+2r);\/?;.

1/ 4

Forr=n""wegetA =in'" O
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The second remark is that if, in the context of Theorem 1, one takes T to be a
discrete set, 1 = d(t,s)= ¢ >0forall t# s, t,s € T. Then one can find an,f with
I flli» = /&)1 f llip - This is discussed in [2]. We bring here a very simple proof. Fix

a t, € T and define f by

fo)=ft) ifx& U B(te/2)

and
f(x) =% [d(x, £)- fto)+ (g— d(x, t)) - f(t)] if xEB (z, g) .
It is easily checked that || flli» = /& )| f llir- O
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